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Abstract—The deadline requirements of real-time applications
rapidly increase in recent years (e.g., cloud gaming, cloud VR,
online conferencing). Due to diverse network conditions, meeting
deadline requirements for these applications has become one of
the research hotspots. However, the current schemes focus on
providing high bitrate instead of meeting deadline requirements.
In this paper, we propose D3T, a flexible deadline-aware transmis-
sion mechanism that aims to improve user quality of experience
(QoE) for real-time video streaming. To fulfill the diverse deadline
requirements over fluctuating network conditions, D3T uses a
deadline-aware scheduler to select the high priority frame before
the deadline. To reduce congestion and retransmission delay,
we leverage a deep reinforcement learning algorithm to make
decisions of sending rate and FEC (forward error correction)
redundancy ratio based on observed network status and frame
information. We evaluate D3T via trace-driven simulator span-
ning diverse network environments, video contents and QoE
metrics. D3T significantly improves the frame completion rate
by reducing the bandwidth waste before the deadline. In the
considered scenarios, D3T outperforms previously approaches
with the improvements in average QoE of 57%.

Index Terms—Transmission control, Real-time video stream-
ing, Deadline-aware scheduling, Congestion control, Forward
error correction.

I. INTRODUCTION

In recent years, the end-to-end stringent delay constraint
requirements (i.e., deadline) have rapidly increased in real-
time video streaming, including online conferencing, multi-
part interactive live streaming, cloud VR, cloud games, etc. For
example, Cloud VR applications should provide the motion-to-
photon delay within 25 ms [1]. Other real-time video stream-
ing applications also have similar demands. Differentiated
deadline requirements are pervasive in real-time applications.

Many transmission control approaches for video streaming
have been proposed to achieve high bitrate and low latency in
complicated network environments. The methods such as loss-
based approaches [2] [3] and model-based approaches [4] [5]
get bitrate as high as possible under the permission of network
conditions. However, if a frame has missed its deadline when
reaching the receiver, it will not be submitted to the upper
application. In this case, the measured throughput is very high,
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but the bandwidth is actually wasted. Hence achieving a high
bitrate does not lead to high QoE. These schemes may cause
a significant waste of bandwidth resources.

There has been another class of methods providing low-
latency transmission. For example, WebRTC [6] provides a
real-time communication service, which incorporates video
codec, FEC [7], and google congestion control to optimize
video data delivery. Salsify [8] couples the codec and transport
process to decide the encoding rate according to the available
bandwidth. Delay-based transmission control algorithms [9]
[10] deliver data based on TCP. Although these solutions have
provided low-latency, they cannot guarantee that the data reach
the receiver before the deadline.

The latest IETF drafts [11] [12] propose QUIC-based pro-
tocols to try to meet the application’s delay requirements.
However, these schemes still use an inflexible FEC redundancy
strategy and the default congestion control, i.e., Reno [3].
The inflexible algorithms achieve low throughput in lossy
networks. Therefore, the frames in real-time applications are
either delayed waiting for retransmission or discarded so that
these frames cannot reach the receiver before the deadline.

In this paper, we focus on the fundamental transmission
issues for the deadline-aware real-time video streaming appli-
cations under complicated network conditions. The end-to-end
delay consists of three parts: (1) Queueing delay at the sender.
If the rate of application data is higher than the sending rate of
the sender, the data may queue at the sender’s packet buffer.
(2) Retransmission delay. In the lossy or high-RTT (round trip
time) networks, congestion and random packet loss frequently
occur in packet switching networks. Both fast recovery and
retransmission timeout will add at least an extra round-trip
delay. (3) Queueing delay in the network. If the sending rate
of the sender is higher than the available bandwidth, the data
may queue at the network buffer.

To address these fundamental delay issues, we consider
providing a scheduler to tackle the queueing delay at the
sender, leveraging the FEC scheme to alleviate the retrans-
mission delay, and utilizing congestion control algorithm to
avoid queueing delay in the network. However, predetermined
policies in scheduler, FEC and congestion control schemes
fail to handle the complicated scenarios caused by various
network conditions and application requirements. Machine
learning methods bring opportunities to complex problems and
enable flexible decisions. Notwithstanding that using a single
model to learn the scheduler, FEC and congestion control978-1-6654-4131-5/21/$31.00 ©2021 IEEE
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policies through deep reinforcement learning (DRL) algorithm
is feasible, the training process is faced with high-dimensional
state/action space and complex optimization function.

To overcome the above problems, we propose D3T, a
novel flexible deadline-aware transmission system that aims
to improve QoE by meeting deadline requirements. To make
the agent training easier, we design a heuristic scheduling
algorithm and train a DRL agent for FEC and congestion
control due to their tight coupling.

To summarize, our contributions are listed as follows:
• We propose a novel architecture named D3T, which can

provide flexible transmission control for real-time video
streaming. It leverages domain knowledge and machine
learning that reduces the bandwidth waste to meet the
deadline requirements (§III).

• We present a deadline-aware scheduling algorithm that can
choose the high priority frame before the deadline and
discard invalid frames to avoid the waste of bandwidth
resources (§IV-A).

• We design a joint decision model based on DRL to adap-
tively select redundancy ratio and sending rate, which con-
sidered deadline requirements and network status(§IV-B).
To mitigate the risk of rebuffering in real-time video stream-

ing, we use H.264 SVC (temporal and spatial scalable video
coding) for deadline-aware applications. The evaluation of
D3T is via trace-driven simulator. The results show that D3T
outperforms the existing approaches with improvements in av-
erage QoE of 57% over a wide range of network environments
and different QoE metrics.

II. MOTIVATION

Real-time applications have the deadline requirements for
their data transmission. Current scheduling, FEC and con-
gestion control algorithms reduce the queueing delay at
the sender, retransmission delay and queueing delay in the
network, respectively. Towards the deadline requirements,
these current schemes may encounter performance degradation
caused by bandwidth waste in the data transmission process.

(1) Bandwidth waste due to overdue frames.
Case1: If the frames have missed their deadline require-

ments when they reach the receiver, they cannot be submitted
to the upper layer application. In the view of transport layer,
the bandwidth utilization is very high, but it is futile to transmit
these overdue frames.

Case2: If the scheduling algorithm always chooses non-
urgent frames to send, many urgent frames are discarded due
to missed the deadline. With a finite number of frames, it may
cause bandwidth waste because there is no frame to send.

(2) Bandwidth waste due to the undecodable frames.
Case1: In video streaming, the dependency relationships

are critical to decode the streams, such as the I/P frames in
H.264 or base/enhance layers in SVC [13]. If a frame does not
arrive on time, its dependent frames are useless even if they
arrive at the receiver on time. Transmitting undecodable frames
wastes the bandwidth. Therefore, the scheduling algorithm

should consider these dependencies when choosing the frames
to send.

Case2: FEC is well-known to be very effective in reli-
able transmission without retransmission. For example, in RS
(Reed-Solomon) code [14], m source packets are selected
from a frame. Then the encoder generates n redundant packets
based on the source packets. These m + n packets form an
FEC group. Once m or more packets, including source and
redundant packets, are collected at the receiver, the m original
data can be recovered from a matrix equation. If the sender
sends k (k < m) packets and the remaining packets in the
FEC group are dropped due to missed deadline, the k packets
sent are undecodable. It is another case of bandwidth waste.

(3) Bandwidth waste due to inappropriate congestion
control.

Congestion control is a fundamental mechanism for data
transmission. The transport protocol such as TCP or QUIC
employs the additive increase multiplicative decrease (AIMD)
algorithm for congestion control (e.g., Cubic, Reno). The
algorithms achieve lower throughput in lossy networks as they
regard the stochastic packet loss as an indicator of network
congestion. Hence a large number of bandwidth resources may
be idle. It is the third case of bandwidth waste due to the
inappropriate congestion control scheme.

III. D3T ARCHITECTURE

Motivated by the phenomenon of bandwidth waste due to in-
appropriate policies, we need to design a flexible transmission
mechanism to mutually collaborate among scheduling, FEC
redundancy and congestion control. Our goal is to deliver as
many higher-priority frames as possible before the deadline.
Toward this goal, there are various trade-offs among priority,
frame size, deadline, frame dependency and dynamic network
status. (1) Under the combined influence of these trade-offs,
the first challenge is how to pick the frames to send and drop
frames to meet the deadline. (2) The second challenge is how
to determine appropriate redundant packets over the diverse
deadline requirements, frame size and network status to meet
the deadline. (3) Beyond that, the performance of congestion
control can be dominated by many factors, including traffic
patterns, RTT, packet loss and deadline requirements and so
on. The third challenge is how to make a decision of the
desired sending rate from a complex network environment to
meet the deadline requirements.

Inspired by machine learning algorithms, the naive approach
is that one DRL-based agent learns all of the policies among
the scheduler, FEC redundancy and congestion control. The
agent needs to get the near-optimal policy from the complex
and various frames information, network conditions and their
trade-offs. Obviously, it is a hard job to get the agent due to
high-dimensional state/action space and complicated design of
reward function.

To tackle these challenges, we propose D3T, a flexible
transmission mechanism for real-time video streaming. D3T
includes a deadline-aware scheduler to avoid bandwidth waste
and a DRL-based agent to get an adaptive policy of FEC
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Fig. 1: D3T architecture.

redundancy and congestion control. Separating the scheduler
from the DRL model reduces the state/action space. Mean-
while, the reward function only needs to give feedback to the
frame completion information and current network status.

In this paper, we design the D3T architecture for end-to-
end deadline-aware transmission of real-time video streaming.
The goal of D3T is to achieve the highest frame completion
ratio before deadline with the flexible transmission control for
frame selection, redundancy ratio and sending rate. Motivated
by above challenges, D3T system is composed of a deadline-
aware scheduler and a DRL agent. The deadline-aware sched-
uler dynamically selects an urgent frame and drops overdue
frames according to the deadline and priority. The DRL agent
learns the adaptive redundancy ratio and sending rate.

The architecture of D3T is shown in Fig. 1 that places
on the sender. In the beginning, the real-time applications
continuously generate new frames on the sender side. Each
frame stores in the frame queue. The scheduler selects a frame
to send and drops overdue frames. If the frame will miss the
deadline, the FEC encoder will generate redundant packets
according to the ratio from the DRL agent. These redundant
packets along with the original packets will be transmitted
to the congestion control. If the frame does not need to
add redundant packets, it will directly be sent to congestion
control. Then congestion control is responsible for monitoring
the network status and getting the sending rate from the DRL
agent. The sender sends these packets to the receiver via the
network based on the decision. On the other side, the receiver
will receive data and decode each frame.

We leverage the soft action-critic algorithm (SAC) [15],
a state-of-the-art reinforcement algorithm that deals with the
continuous action space to train the agent. The agent takes the
frame information and network status and outputs the FEC
redundancy ratio and sending rate in each decision interval.
The sender is responsible for periodically estimating network
status. The network status including average delay, packet loss
rate and throughput is counted at the sender. The receiver sends
back ACKs to the sender. The frame completion ratio and
network status are computed according to ACKs. The above
information is provided not only to the scheduler but also to
the DRL agent.

IV. DETAILED DESIGN

In this section, we present the detailed design of D3T. We
begin with introducing the deadline-aware scheduler. Then we
describe adaptive FEC redundancy and congestion control.

A. Deadline-aware scheduler

When the bandwidth resource is not enough, the frames
continuously generated from the real-time applications will
accumulate at the sender side. The scheduler determines the
order in which frame is sent and discards the obsolete frames.
The goal of the deadline-aware scheduler is to transmit as
many high-priority frames before the deadline. To achieve the
goal, the priority, deadline and network status should be taken
into consideration when designing the scheduling algorithm.

The first step of the scheduler is to calculate the
remaining time and weight of all frames in the frame queue
according to the equation (1) and (2). Then the scheduler
chooses a frame with the smallest weight. If deadline minus
passed time of a frame is less than 0, it means that the frame
has been obsoleted and will be dropped from the frame queue.

remaining time = deadline− passed time

− estimated rtt

2
− remaining size

current sending rate

(1)

weight =
remaining time/deadline

1− priority/max priority
(2)

where pass time is the waiting time of a frame in the frame
queue. And remain size is the number of unsent packets
of the frame. estimated rtt represents the current RTT. The
priority of the frame from high to low is defined from 0 to
N-1 (for example N priority levels). For example, in video
streaming, the priority of I frame, B frame, and P frame are
defined as 0, 1, and 2, respectively. The max priority in
equation (2) is equal to N.

B. Adaptive redundancy and congestion control

1) Deep reinforcement learning for D3T:
The FEC redundancy and congestion control problems are

formulated as deep reinforcement learning tasks. The DRL
agent provides a dynamic policy to map current observations
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(i.e., state) to the redundant ratio and sending rate (i.e., action).
As shown in Fig. 2, we present the components of the actor-
critic framework of D3T.
State space. The state is a snapshot of the environment
observed by the agent after taking action over a period.
Although a large amount of state may reflect the network state
more comprehensively, it will also increase the difficulty of
model learning. Therefore we choose the performance metric
that represents the network condition as the agent’s state. The
state st at time step t is represented as (1) the current frame
deadline, (2) the frame remaining size, (3) the frame priority,
(4) the average throughput, (5) the current RTT, (6) the packet
loss, and (7) the last action. The above statistics information
can be easily obtained from the sender by tracing the ACKs
at each decision period.
Action. The agent gets an action to respond to the observed
state of the environment according to the policy. The policy is
represented as a neural network with a manageable number of
adjustable parameters. In our formulation, the action space is
continuous and the action at is defined as a tuple that includes
the redundant ratio fec ratio and the sending rate rate of the
sender. In general, the agent takes an action at the end of each
interval period.
Reward. The reward is the award or punishment for positive
and negative actions. In each interval period, the sender
updates the observed state and executes an action to adjust
the redundant ratio and sending rate, which results in an
instantaneous reward rt. In this paper, we adopt a reward
function that awards the frame completion ratio and throughput
while penalizing loss and delay, aiming to achieve a high
frame completion ratio, high throughput, low delay and low
congestion loss rate. The reward rt is defined as:

rt = fnorm(
throughputt
ave delayt

)− fnorm(loss ratet)

+ fnorm(completion ratiot)

(3)

where throughputt is the instantaneous observed through-
put of the sender. avg delayt is the average delay which
is calculated with RTT samples measured within 0.1s.
loss ratet is the observed packet loss rate form the sender.
completion ratiot is the frame completion ratio at time step
t. fnorm is the normalization function. Generally, the agent
selects an action to maximize the expected cumulative reward.
Training algorithm. To train D3T agent, we leverage the
SAC [15] algorithm which is an actor-critic algorithm with
off-policy for maximum entropy reinforcement learning. As
shown in Fig. 2, the actor network is responsible for choosing
the proper action. The critic network estimates the value of an
action, and conducts it to update the parameters of actor and
critic networks.

2) Adaptive redundancy:
If the remaining time of the current frame is beyond

the deadline, the FEC codec will not execute. Otherwise, if
the remaining time of the frame has less than two RTT or
the frames that could be corrupted under the larger available
bandwidth, the redundant packets will generate from the

State st
Frame deadline

Frame remaining size

Frame priority

Average throughput

Current RTT

Packet loss rate

Last action

Actor Network

Critic Network

Value
Vπθ(St)

Policy
πθ(St,at)

Fig. 2: The actor-critic algorithm that D3T uses to generate
the policies of FEC redundant ratio and sending rate.

original packets. In detail, we adopt the remaining size of
the frame as the size of the original packets m. Then the n
redundant packets generate from m original packets according
to the redundancy ratio fec ratio taken from the DRL agent.
The FEC group is assembled according to the above (m,n).
After the current frame has been sent, the new frame needs to
get a new fec ratio from the agent again.

3) Congestion control:
Congestion control regulates the sending rate at each sender

to maximize the throughput, minimize the queueing delay
and the packet loss. Specifically, congestion control monitors
the network conditions and provides the network measure-
ments, such as throughput, RTT and loss rate. These network
conditions is provided to the scheduler and the agent for
decision making. In this paper, we adopt the sending rate
as the decision-making. At each decision period, congestion
control gets the sending rate from the DRL agent. The sender
persistently sends the packets according to the current sending
rate until it takes a new action from the agent.

V. EVALUATION

In this section, we evaluate D3T under various network
conditions and QoE metrics. Our experiments are conducted
in our simulator using Python1.

A. Dataset and metrics

Video dataset. We train and test D3T on public video dataset
[16] In our experiments, through the open-source encoder
JSVM [17], we successfully encode the AVC video streaming
into SVC streaming that supports different frame rates and
resolutions. Leveraging JSVM, we obtain the SVC streams
that include the resolution of 360P, 720P, 1440P and 7.5fps,
15fps, 30fps streams through the 1440P AVC video streaming.
Network traces. To train and evaluate D3T, we also use the
Belgium dataset [18] which consists of throughput measure-
ments in cellular networks. The dataset is collected based on
different types of transportation such as tram, car and bus.

1https://github.com/AItransCompetition/Meet-Deadline-Requirements-
Challenge
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Fig. 3: Comparing D3T with existing schemes on different QoE metrics.
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Fig. 4: QoE performance using different content videos under the cellular traces.

QoE metrics. To evaluate the D3T, we consider using QoE
metrics with essential factors based on previous schemes
[19] [20] which have been widely accepted by researchers
in network systems. A general QoE metric is evaluated with
bitrate, rebuffering, smoothness or frame-skipping. Consider-
ing the frame-deadline condition, we add some parameters
into general QoE function to make them suitable for deadline
evaluation. The QoE metrics is defined as following:

QoE =

N∑
n=1

(α(1−Dn)f(Rn)− βDnTn)

−
N−1∑
n=1

γ|f(Rn+1)(1−Dn+1)− f(Rn)(1−Dn)|

(4)

where N is the number of GoPs. Rn represents the bitrate of
a GoP and f(Rn) maps that bitrate to the quality perceived
by a user, including three choices provided by Pensieve [19].
In our experiment, we analyze the max bitrate of a GoP
with arrived layers according to SVC layers dependencies.
Tn represents the sum of rebuffering and frame-skipping time
of GoP n. The last term represents the smoothness of video
quality. The coefficients α, β and γ are the different trade-offs
of application scenarios or user preferences. Specifically, the
values of these coefficients we consider in our evaluation are
provided in Table I.
Baseline. We compare D3T with representative solutions.
(1) Reno: the default congestion control algorithm used by
TCP and QUIC. It takes the packet loss as the congestion
signal. A default scheduler FIFO and a zero FEC redundancy
are used in this baseline.

TABLE I: QoE metrics in our evaluation.
Name Bitrate utility(f(R)) α β γ
QoElin R 1.0 4.3 0.05
QoElog log(R/Rmin) 1.0 2.66 0.01

QoEhd

420->1,500->2,580->3,
1880->12,2220->13,2640->14
5040->23,6140->24,7440->25

1.0 8 0.2

(2) BBR [4]: a state-of-art congestion control algorithm given
by google. BBR discards packet loss as the congestion signal
and uses complex detection mechanisms. A default scheduler
FIFO and a zero FEC redundancy are used in this baseline.
(3) Reno + FEC and BBR + FEC: respectively use congestion
control algorithm and scheduler as approaches above, but they
set up the FEC redundancy algorithm according to a heuristic
algorithm [12] that take loss rate into consideration.

B. D3T performance

QoE performance. To evaluate D3T, we first compare it with
existing transmission approaches with QoE metrics above. We
set up net traces with a wide range of RTT and loss in order
to test the flexibility of different solutions. Fig. 3 shows the
average QoE that each solution achieves in traces set. D3T
outperforms existing solutions with improvements in average
QoE of 57% across various network conditions and QoE
metrics. For QoElin, the average QoE for D3T is 11% higher
than existing schemes on various network traces on average.
For QoElog and QoEhd, D3T achieves 135% and 26% higher
than other schemes. The baseline solution with fixed policy
suffers from low bandwidth utilization in lossy networks
and also is not able to selectively increase FEC redundancy
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Fig. 5: Frame completion ratio using different content videos under the cellular traces.

for urgent frames. Whereas D3T gives better performance
depending on its flexible policy about FEC redundancy and
congestion control.
Frame completion ratio. Except for showing results with
overall QoE performance figures, we also pick different con-
tent videos and conduct experiments for frame completion
ratio and corresponding QoE. Fig. 4 and Fig. 5 illustrate the
QoE performance and average frame completion ratio under
various types of videos. We find that D3T outperforms the
existing solutions to improve frame completion ratio by 16%
to 52% on average, under the D3T’s adaptive FEC redundancy
and congestion control policy. It is also worth mentioning that
the frame completion ratio of the BBR+FEC scheme is slightly
higher than D3T on sports videos as shown in Fig. 5(c). The
main reason is that the frame completion ratio is an index
of transmission evaluation, which ignores the dependencies
among video frames. To point this out, we also give Fig. 4,
the corresponding QoE results in same test settings, which
shows that D3T achieves better QoE than other schemes.
BBR+FEC ignores the structure of video stream data and
sends more useless frames that cannot be decoded according
to considering frame dependencies. Therefore, the BBR+FEC
scheme gives a poor QoE despite achieving a better frame
completion ratio as shown in Fig. 4(c).

VI. CONCLUSION

In this paper, we propose D3T, a flexible deadline-aware
transport system with a deadline-aware scheduler and an
adaptive DRL agent for FEC redundancy and congestion
control without any human instruction to meet the deadline
requirements. The deadline-aware scheduler chooses the high-
priority frame before the deadline and discards obsolete frames
to avoid bandwidth waste. We train the DRL agent to achieve
flexible policies to adapt to the dynamic network condition and
diverse deadline requirements. To verify the D3T’s behavior,
we evaluate D3T in our simulator. The experiments with
different video contents, network conditions and QoE metrics
have been conducted to illustrate the D3T to enhance both
QoE and frame completion ratio before the deadline.
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